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Abstract. Let q(r), r = |x|, x ∈ R3, be a real-valued square-integrable compactly supported
function, and [0, a] be the smallest interval containing the support ofq(r). Let A(α′, α) =
A(α′ ·α) be the corresponding scattering amplitude at a fixed positive energy,k2 = 1. Let δ` be

the phase shifts atk = 1. It is proved that lim̀→∞( 2`+1
e
|δ`| 1

2` ) = a, provided thatq(r) does
not change sign in some, arbitrary small, neighbourhood ofa.

1. Introduction

The aim of this letter is to give a partial justification of the modified conjecture due to
Ramm [R1, p 356, formula (7)].

Let us make the following assumption.

Assumption A.The potential q(r), r = |x|, is spherically symmetric, real-valued,∫ a
0 |q|2 dr < ∞, andq(r) = 0 for r > a, but q(r) 6≡ 0 on (a − ε, a) for all sufficiently

small ε > 0.

The numbera > 0 we call the radius of compactness of the potential, or simply the
radius of the potential. LetA(α′, α) denote the scattering amplitude corresponding to the
potential q at a fixed energyk2 > 0. Without loss of generality let us takek = 1 in
what follows. Byα′, α ∈ S2 the unit vectors in the direction of the scattered, respectively,
incident wave, are meant,S2 is the unit sphere inR3. Let us write, as in [R1],

A(α′, α) =
∞∑
`=0

A`(α)Y`(α
′) (1.1)

whereY` = Y`m, −` 6 m 6 `, are the usual orthonormal inL2(S2) spherical harmonics
(defined by formula (10) in [R1, p 21]) andA` := A`m are the Fourier coefficients ofA:

A`(α) = (A(α′, α), Y`m(α′))L2(S2). (1.2)

It is of interest to obtain any information aboutq from the (fixed-energy) scattering
data, that is, from the scattering amplitudeA(α′, α), or, equivalently, from the coefficients
A`(α). Very few results of such type are known, although it was proved by Ramm that
q(x) is uniquely defined by the valuesA(α′, α) [R1, p 64, R3, R4, R7].
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The only other result of such type, known to the authors, is the necessary and sufficient
condition for q(x) = q(|x|); it was proved by Ramm [R1, p 131], thatq(x) = q(|x|) if
and only ifA(α′, α) = A(α′ · α). Of course, the necessity of this condition was common
knowledge, but the sufficiency, that is, the implication:A(α′, α) = A(α′ · α) ⇒ q(x) =
q(|x|), is a recent result [R2].

A modified conjecture from [R1, p 356] (the exponent in [R1] was1
`

while in formula
(1.3) below it is 1

2` ) says that if the potentialq(x) is compactly supported, anda > 0
is its radius (defined for non-spherically symmetric potentials in the same way as for the
spherically symmetric), then

a = lim`→∞

(
2`+ 1

e

[
sup
α∈S2

−`6m6`

|A`m(α)|
] 1

2`
)
. (1.3)

In this paper we prove (1.3) for the spherically symmetric potentialsq = q(r).
If q = q(r) then

A`m(α) = ã`Y`m(α) (1.4)

where ã` depends only oǹ and k, but not onα or α′. Sincek = 1 is fixed, ã` depends
only on ` for q = q(r). To prove (1.4) assumingq = q(r), one takesA(α′, α) = A(α′ · α)
and calculates

A`m(α) =
∫
S2
A(α′ · α)Y`m(α′) dα′ = ã`Y`m(α) (1.5)

where

ã` := 2π

C
( 1

2 )

` (1)

∫ 1

−1
A(t)C

( 1
2 )

` (t) dt ` = 0, 1, 2, . . . . (1.6)

Here we have used formula (14.4.46) from [RK, p 413], andC
(p)

` (t) are the Gegenbauer

polynomials (see [RK, p 408]). SinceC
( 1

2 )

` = P`(t), P`(1) = 1, whereP`(t) are the
Legendre polynomials (see, e.g. [RK, p 409]), formula (1.6) can be written as:

ã` = 2π
∫ 1

−1
A(t)P`(t) dt. (1.7)

Formula (1.3) forq = q(r) can be written as

a = lim`→∞

(
2`+ 1

e
|ã`| 1

2`

)
. (1.8)

Indeed,

sup
α∈S2

−`6m6`

|Y`m| = O(`
1
2 )

as is well known (see, e.g. [MP, p 261]). Thus

lim`→∞

(
sup
α∈S2

−`6m6`

|Y`m(α)|
)1
`

= 1 (1.9)

and formula (1.8) follows from (1.3), (1.4) and (1.9). Formula (1.8) can be rewritten in the
equivalent form:

a = 2

e
lim`→∞(`|ã`| 1

2` ). (1.10)
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Note that assumption A, made in the introduction, implies the following assumption.

Assumption A′. The potentialq(r) does not change sign in some left neighbourhood of the
point a.

This assumption in practice is not restrictive, however, as shown in [R1, p 282], the
potentials which oscillate infinitely often in a neighbourhood of the right end of their support,
may have some new properties which the potentials without this property do not have. For
example, it is proved in [R1, p 282], that such infinitely oscillating potentials may have
infinitely many purely imaginary resonances, while the potentials which do not change sign
in a neighbourhood of the right end of their support cannot have infinitely many purely
imaginary resonances. Therefore it is of interest to find out if assumption A is necessary
for the validity of (1.10).

The main result of this paper is the following theorem.

Theorem 1.1.Let assumption A hold.. Then formula (1.10) holds withlim replaced by lim.

This result can be stated equivalently in terms of the phase shiftδ` defined in formula
(3.2). Namely:

lim
`→∞

(
2`+ 1

e
|δ`| 1

2`

)
= a. (1.10′)

Lemma 1.1.If q = q(r) ∈ L2(0,∞), q(r) is real-valued and does not change sign in some
interval (a1, a] wherea1 < a, anda is the radius ofq, then

a = limm→∞

∣∣∣∣ ∫ ∞
0
q(r)rm dr

∣∣∣∣ 1
m

m = 1, 2, . . . . (1.11)

Later we prove (1.10) and, therefore, formula (1.3) for spherically symmetric potentials.

2. Proof of lemma 1.1

First, we obtain a slightly different result from (1.11) as an immediate consequence of
the Paley–Wiener theorem. Namely, we prove lemma 1.1 with a continuous parametert

replacing the integerm andlim replacing lim. This is done forq(r) ∈ L2(0, a) and without
additional assumptions aboutq. However, we are not able to prove lemma 1.1 assuming
only thatq(r) ∈ L2(0, a).

Sinceq(r) is compactly supported, one can write

I (t) :=
∫ ∞

0
q(r)rt dr =

∫ a

0
q(r)et ln r dr =

∫ ln a

−∞
q(eu)euetu du. (2.1)

Let us recall that Paley–Wiener theorem implies the following claim (see [L]).
If f (z) = ∫ b2

b1
g(u)e−iuz du, [b1, b2] is the smallest interval containing the support of

g(u), andg(u) ∈ L2(b1, b2), then

b2 = limt→+∞(t−1 ln |f (it)|) = limt→+∞
ln | ∫ b2

b1
g(u)etu du|
t

. (2.2)

Thus, using (2.1) and (2.2), one obtains

ln a = limt→+∞

(
t−1 ln

∣∣∣∣ ∫ ln a

−∞
q(eu)euetu du

∣∣∣∣). (2.3)

Formula (2.3) is similar to (1.11) withm replaced byt and lim replaced bylim.
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Remark 2.1.We have used formula (2.2) withb1 = −∞, while in the Paley–Wiener theorem
it is assumed thatb1 > −∞. However, forb1 < b2, g 6≡ 0 on [b2 − ε, b2] for any ε > 0,
one has: ∫ b2

−∞
g(u)etu du =

∫ b1

−∞
g(u)etu du+

∫ b2

b1

g(u)etu du := h1(t)+ h2(t).

Thus limt→∞ h1(t)

h2(t)
= 0, and

limt→∞
ln |h1(t)+ h2(t)|

t
= limt→∞

ln |h2(t)|
t

+ lim
t→∞

ln |1+ o(1)|
t

= limt→∞
ln |h2(t)|

t
= ln a.

Therefore formula (2.3) follows.
To prove (1.11), we use a different approach independent of the Paley–Wiener theorem.

We will use (1.11) below, in formula (3.15). In this formula the role ofq(r) in (1.11) is
played byrq(r)[1+ ε(r, `)], whereε = O( 1

`
). Let us prove (1.11).

Assume without loss of generality thatq > 0 near a. Let I := ∫ a
0 q(r)r

m dr =∫ a1

0 q(r)rm dr + ∫ a
a1
q(r)rm dr := I1 + I2. We have|I1| < cam1 , c1(a − η)m < I2 < c2a

m,
whereη is an arbitrary small positive number. Thus,I > 0 for all sufficiently largem,
and I 1/m = I 1/m

2 (1+ I1
I2
)1/m. One hasa − η 6 I 1/m

2 6 a and I1
I2
→ 0 asm → ∞. Since

η is arbitrary small, it follows that limm→∞ I 1/m = a. This completes the proof of (1.11).
Lemma 1.1 is proved. �

3. Proof of formula (1.10)

By (1.4) and (1.5), one has

A(α′ · α) =
∞∑
`=0

ã`Y`(α)Y`(α
′) := 4π

∞∑
`=0

a`Y`(α)Y`(α
′) (3.1)

where,a` := ã`
4π , k = 1, and

a` = e2iδ` − 1

2i
= eiδ` sinδ` (3.2)

andδ` are the phase shifts. One has [N, formula (11.19)]:

a` = −
∫ ∞

0
dr u`(r)q(r)ψ`(r) (3.3)

whereu`(r) = rj`(r) ∼ sin
(
r − `π

2

)
as r → ∞, j`(r) are the spherical Bessel functions,

j`(r) := √ π
2r J`+ 1

2
(r), andψ`(r) is the solution to the equations:

ψ ′′` + k2ψ` − `(`+ 1)

r2
ψ` − q(r)ψ` = 0

with the asymptotics:

ψ` ∼ ei π2 (`+1)

2
(e−ir − e−iπ`S`e

ir ) asr →∞ S` := exp(2iδ`).

The functionψ` solves (uniquely) the integral equation

ψ`(r) = u`(r)+
∫ ∞

0
g`(r, s)q(s)ψ`(s) ds k = 1 (3.4)
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where

g`(r, s) = −u`(r)w`(s) r < s g`(r, s) = g`(s, r) (3.5)

w`(s) := i

√
πs

2
H
(1)
`+ 1

2
(s) u`(r) =

√
πr

2
J`+ 1

2
(r) (3.6)

andH(1)
` is the Hankel function.

It is known [RK, p 407] that

Jν(r) ∼
( er

2ν

)ν 1√
2πν

H(1)
ν (r) ∼ −i

√
2

πν

( er
2ν

)−ν
Jν(r)H

(1)
ν (r) ∼ − i

πν
ν →+∞

(3.7)

and [AR, appendix 4]:

|Jν(r)H (1)
ν (r)| < (ν2− 1

16)
− 1

4 ν > 1
4. (3.8)

It follows from (3.7) thatu`(r) does not have zeros on any fixed interval(0, a] if ` is
sufficiently large. Define

v`(r) := ψ`(r)

u`(r)
. (3.9)

Then (3.4) yields

v`(r) = 1+
∫ a

0

g`(r, s)u`(s)

u`(r)
q(s)v`(s) ds. (3.10)

From (3.5) and (3.7) one obtains

g`(r, s) ∼ r

2`+ 1

( r
s

)̀
r < s `→+∞ (3.11)

u`(s)

u`(r)
∼
( s
r

)`+1
`→+∞. (3.12)

Thus

g`(r, s)
u`(s)

u`(r)
∼ s

2`+ 1
. (3.13)

This implies that for sufficiently largè equation (3.10) has a small kernel and therefore is
uniquely solvable inC(0, a) and one has

ψ`(r) = u`(r)
[

1+O

(
1

`

)]
as`→+∞ 06 r 6 a (3.14)

uniformly with respect tor ∈ [0, a].
Note that in [N, formula (12.180)], which gives the asymptotic behaviour ofS` for large

`, is misleading: the remainder in this formula is of order which is much greater, in general,
than the order of the main term in this formula. That is why we had to find a different
approach, which yielded formula (3.14).

From (3.3), (3.6), (3.7) and (3.14) one obtains

a` = −
∫ ∞

0
dr q(r)u2

`(r)

[
1+O

(
1

`

)]
= −

∫ a

0
dr q(r)r2r2`

[
1+O

(
1

`

)]
1

4`+ 2

(
e

2`+ 1

)2`+1

. (3.15)
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Therefore, using (1.11), one obtains:

lim
`→∞

(
2`+ 1

e
|a`| 1

2`

)
= lim

`→∞

∣∣∣∣ ∫ a

0
dr q(r)r2r2`

∣∣∣∣ 1
2`

= a. (3.16)

Theorem 1.1 is proved. �
Remark 3.1.Sinceδ` → 0 as` → +∞, and sinδ` ∼ δ`, eiδ` ∼ 1, asδ` → 0, formulae
(3.16) and (3.2) imply:

lim
`→∞

(
2`+ 1

e
|δ`| 1

2`

)
= a

whereδ` is the phase shift at a fixed positive energy. This is formula(1.10′).

AGR thanks Dr M Klaus for a discussion.
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